NMR studies of lysozyme surface accessibility by using different paramagnetic relaxation probes.
نویسندگان
چکیده
Paramagnetic probes, whose approach to proteins can be monitored by nuclear magnetic resonance (NMR) studies, have been found to be of primary relevance for investigating protein surfaces' accessibility. Here, a Gd(III) neutral complex which contains two metal ions, [Gd2(L7)(H2O)2], is suggested as a paramagnetic probe particularly suited for systematic NMR investigation of protein surface accessibility, due to an expected high relaxivity and to the lack of electric charge which could favor specific interactions. Hen egg white lysozyme has been used as a model system to verify the absence of preferential approaches of this paramagnetic probe to specific protein moieties by comparing paramagnetic perturbation profiles of 1H-13C HSQC signals obtained in the presence of TEMPOL and [Gd2(L7)(H2O)2]. From the similarity of the measured paramagnetic perturbation profiles induced by the two different probes, specific interactions of [Gd2(L7)(H2O)2] with the enzyme could be ruled out. The large size of the latter probe is suggested to be responsible for the strong paramagnetic perturbations observed for CalphaH groups which are located in convex surface-exposed regions. The combined use of the two probes reveals fine details of the dynamics controlling their approach toward the protein surface.
منابع مشابه
Probing surface accessibility of proteins using paramagnetic relaxation in solid-state NMR spectroscopy.
Paramagnetic Relaxation Enhancement (PRE) can be used to accelerate NMR data acquisition by reducing the longitudinal proton relaxation time T(1) in the solid state. We show that the presence of paramagnetic compounds in the bulk solvent induces a site-specific relaxation in addition to local dynamics, which is dependent on the surface accessibility of the respective amide proton in the protein...
متن کاملStudying the Structure and Dynamics of Biomolecules by Using Soluble Paramagnetic Probes
Characterisation of the structure and dynamics of large biomolecules and biomolecular complexes by NMR spectroscopy is hampered by increasing overlap and severe broadening of NMR signals. As a consequence, the number of available NMR spectroscopy data is often sparse and new approaches to provide complementary NMR spectroscopy data are needed. Paramagnetic relaxation enhancements (PREs) obtaine...
متن کاملParamagnetic NMR Investigation of Dendrimer-Based Host-Guest Interactions
In this study, the host-guest behavior of poly(amidoamine) (PAMAM) dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the ¹H NMR peaks of amine- and hydroxyl-terminated PAM...
متن کاملPrediction of Protein Structure Using Surface Accessibility Data
An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance-to-surface information encoded in the sPRE data in the chemical shift-based CS-Rosetta de novo structure prediction framework to generate reliable structural m...
متن کاملThe use of a ditopic Gd(III) paramagnetic probe for investigating α-bungarotoxin surface accessibility.
Protein surface accessibility is a critical parameter which drives all intermolecular interaction processes. In this respect a big deal of information has been derived by analyzing paramagnetic perturbation profiles obtained from NMR protein spectra, particularly in the case that the effects due to different soluble paramagnets can be compared. Here Gd(2)L7, a neutral ditopic paramagnetic NMR p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 29 شماره
صفحات -
تاریخ انتشار 2006